

Mohammad Tawhidul Hasan Bhuiyan

 mb5332@columbia.edu | [Tawhid Bhuiyan](#) | mthbhuiyan.github.io

RESEARCH INTEREST

Compiler, Profile-Guided Optimizations, Systems for Machine Learning, Hardware/Software Co-Design

EDUCATION

Columbia University

PhD in Electrical Engineering

New York, USA

Sept. 2024 – May 2030 (expected)

Bangladesh University of Engineering and Technology (BUET)

Masters of Science in Computer Science and Engineering

Palashi, Dhaka, Bangladesh

July 2021 – Aug. 2024

Bangladesh University of Engineering and Technology (BUET)

Bachelor of Science in Computer Science and Engineering

Palashi, Dhaka, Bangladesh

Mar. 2016 – Feb. 2021

 Class rank: 1st

EMPLOYMENT

Columbia University

Graduate Research and Teaching Assistant

New York, USA

Sept. 2024 – Present

Bangladesh University of Engineering and Technology (BUET)

Lecturer, Department of CSE

Dhaka, Bangladesh

Sept. 2021 – Aug. 2024

PUBLICATIONS

- **Tawhid Bhuiyan**, Sumya Hoque, Angelica Moreira, Tanvir Ahmed Khan, **Stale Profile-Guided Optimizations**, Submitted to ASPLOS-2026
- Ryan Piersma*, **Tawhid Bhuiyan***, Tanvir Ahmed Khan, and Simha Sethumadhavan, **Highly Scalable Power Management Protocol**, Submitted to ISCA-2026, (*Co-first Authors)
- Amir Zarandi, **Tawhid Bhuiyan**, Laurent Schares, and Tanvir Ahmed Khan, **Rebasing GPU Micro-Architectural Power Modeling for Machine Learning Workloads**, Submitted to CAL-2026
- Ryan Piersma, **Tawhid Bhuiyan**, Tanvir Ahmed Khan, and Simha Sethumadhavan, **Reverse Engineering DVFS Mechanisms**, 2025 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), San Jose, CA, USA, 2025
- **Mohammad Tawhidul Hasan Bhuiyan**, Muhammad Rashed Alam and M. Sohel Rahman, **Computing the Largest Common Almost-Increasing Subsequence**, *Theoretical Computer Science*, Volume 930, 2022, Pages 157-178, ISSN 0304-3975
- **Mohammad Tawhidul Hasan Bhuiyan**, Irtesam Mahmud Khan, Sheikh Saifur Rahman Jony, Renee Robinson, Uyen-Sa D. T. Nguyen, David Keellings, M. Sohel Rahman, and Ubydul Haque, **The Disproportionate Impact of COVID-19 among Undocumented Immigrants and Racial Minorities in the US**, *International Journal of Environmental Research and Public Health*, Volume 18(23): 12708, 2021, PubMedID 34886437, ISSN 1660-4601

PROJECTS

Optimizing Datacenter Applications with Stale Profile | C++, Python, LLVM

Sept. 2024 – Present

- Developed algorithms to map hardware profiles from deployed datacenter applications to new application binaries, enabling effective optimization despite "stale" profile data.
- Integrated mapping heuristics with Meta's BOLT and Google's Propeller, demonstrating applicability across industry-standard optimization toolchains.

Highly Scalable Token-Based Power Management Protocol | Python, Numba, Architecture

Aug. 2025 – Present

- Built a simulator for a token-based power management protocol capable of running cycle-accurate power distribution on top of both cycle-accurate and event-driven system components.
- Designed a novel protocol for system-wide power distribution. Achieved 2.4x more responsive power distribution compared to State-of-the-Art solutions for systems comprising thousands of interconnected components.

Optimizing GPU energy efficiency for LLM | CUDA, NVIDIA Nsight, Architecture

Feb. 2025 – Present

- *Thermal-Aware GPU Power Modeling:*
 - Developed a high-fidelity power model for LLMs by correlating NVML/ CUPTI energy traces with PyTorch layer-level timing.
 - Discovered that standard power models fail for compute-heavy kernels due to thermal throttling; implemented corrections to account for dynamic frequency scaling during long-sequence inference, enabling more accurate energy-per-token predictions.
- *Simulator Scalability & Validation (Accel-sim):*
 - Validated Accel-sim traces against real-world LLM workloads on NVIDIA Datacenter GPUs.
 - Identified critical scaling bottlenecks in Accel-sim's handling of transformer architectures and implemented patches to achieve accurate power modeling for large-scale models.
- *Energy Modeling for Multi-GPU Training (Astra-sim):*
 - Integrated custom energy models into Astra-sim to quantify energy consumption across distributed multi-GPU training setups.
 - Analyzed the performance-energy trade-offs for different models and network technologies.

Parallelization Suggestion for Python Programs | Python, Compiler

Jan. 2022 – Aug. 2024

- Developed a compiler-based prototype to profile Python programs and suggest optimal parallelization strategies for distributed environments.
- Achieved performance parity with manually parallelized programs for a set of input programs from Kaggle.

TECHNICAL SKILLS

Architectural Simulators: Accel-sim, Astra-sim, DRAMsim3, Ramulator2, Calculon

Compiler & Systems: LLVM, BOLT, Propeller, AutoFDO

Performance Tools: perf, NVIDIA Nsight, NVML, CUPTI, PyTorch Profiler

Languages: C/C++, Python, Java, SQL, Bash, Rust, Haskell, JavaScript

Libraries: Polars, Numba, PyTorch, Scikit-Learn, Tensorflow, Pandas, NumPy, Matplotlib

AWARDS

- BUET Alumni Association Award for securing top position in the department
- Dean's Honor List, BUET in all 8 undergraduate semesters
- University Merit Scholarship, BUET

TEACHING & MENTORSHIP

Columbia University

Mentor

- Mentored Amir Zarandi (Undergraduate student, Columbia University) in conducting original research, resulting in a co-authored paper which is under submission.
- Mentored 15 students across 4 technical projects. Guided teams through the design, implementation, and debugging complex systems. Some key projects include:
 - *Fine-grained GPU DVFS*: Leading the students to update Accel-sim to allow simulating and evaluating new DVFS techniques for GPU cores.
 - *HBM DVFS & Co-Optimization*: Leading the investigation into HBM idle power; utilizing DRAMsim3 and Ramulator2 to propose co-optimized DVFS mechanisms for GPU compute and memory.
 - *Power-Aware Collective Communication*: Guiding the integration of different ML models into Astra-sim to easily simulate different model architecture.

Bangladesh University of Engineering and Technology (BUET)

Lecturer

- Developed curriculum and delivered lectures for core undergraduate courses:
 - *Operating Systems*: Led hands-on sessions on modifying open-source kernels; taught memory virtualization techniques and file systems.
 - *Database Systems*: Instructed on schema design, normalization theory, and the internal architecture of DB storage systems.

REFERENCES

Tanvir Ahmed Khan

Assistant Professor

Department of Electrical Engineering

Columbia University

 tk3070@columbia.edu